

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 4007-4012

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Some $A_6B_5O_{18}$ cation-deficient perovskites in the BaO-La₂O₃-TiO₂-Nb₂O₅ system

Hui Zhang^{a,b}, Liang Fang^{a,b,*}, R. Dronskowski^b, P. Müller^b, R.Z. Yuan^a

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China

^bInstitute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany

Received 4 July 2004; received in revised form 2 August 2004; accepted 2 August 2004 Available online 7 October 2004

Abstract

Some dielectric oxides have been synthesized and characterized in the BaO-La₂O₃-TiO₂-Nb₂O₅ system. Through Rietveld refinement of X-ray powder diffraction data, Ba₅LaTi₂Nb₃O₁₈ and Ba₄La₂Ti₃Nb₂O₁₈ are identified as the A_nB_{n-1}O_{3n} (n = 6) type cation-deficient perovskites with space group $R\overline{3}m$ and lattice constants a = b = 5.7106(1)Å, and c = 42.0666(5)Å for Ba₅LaTi₂Nb₃O₁₈; a = b = 5.6602(1)Å, and c = 41.8296(5)Å for Ba₄La₂Ti₃Nb₂O₁₈, respectively. Their ceramics exhibit high dielectric constant up to 57 and high quality factors (*Qf*) up to 21,273 GHz. The temperature coefficient of resonant frequency (τ_{f}) of these ceramics is decreased with the increase of B-site bond valence.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Cation-deficient perovskite; Dielectric materials; X-ray powder diffraction

1. Introduction

Recently, the microwave dielectric properties of some $A_5B_4O_{15}$ type cation-deficient hexagonal perovskites such as $Ba_5Nb_4O_{15}$, $Ba_{5-x}Sr_xNb_4O_{15}$, $Ba_5Ta_4O_{15}$, $ALa_4Ti_4O_{15}$ (A = Ca, Sr and Ba) have attracted much attention because of their important application as microwave dielectric resonators and filters [1–6], while only two $A_6B_5O_{18}$ type perovskites ($A_2La_4Ti_5O_{18}$, with A = Ca, Ba) so far have been reported [7–9]. Both ceramics are characterized by high dielectric constant (ε_r) up to 50.6, high quality factors (Qf) up to 31,839 GHz, and low temperature coefficient of resonant frequency τ_f in the range -36.4 to $+6 \text{ ppm}^{\circ}\text{C}^{-1}$. It is worthwhile to investigate whether other $A_6B_5O_{18}$ perovskites might have equivalent or superior properties. The authors recently investigated some new $A_6B_5O_{18}$ oxides in the BaO– La_2O_3 -TiO₂-Nb₂O₅ system, the present ceramics exhibit high dielectric constant up to 56.6, high quality factors and a positive temperature coefficient of resonant frequency $\tau_{\rm f}$ in the range +65-+142 ppm °C⁻¹ [10,11], in contrast with $A_6B_{10}O_{30}$ -type filled tungsten-bronze compounds, such as Ba5LaTi3Nb7O30 and Ba4La2Ti4Nb6O30, which show ferroelectric nature with high loss at microwave frequency and large temperature coefficient [12,13]. These $A_6B_5O_{18}$ type ceramics have great potential in microwave application if the temperature coefficient can be suppressed to an acceptable level $(-20 \text{ ppm} \circ \text{C}^{-1} < \tau_f < +20 \text{ ppm} \circ \text{C}^{-1})$, and the understanding of their crystal structures is a key point for such property modification. In the present paper, we report the structure characterization of Ba5LaTi2 Nb₃O₁₈ and Ba₄La₂Ti₃Nb₂O₁₈ together with the microwave dielectric properties.

2. Experimental

Ba₅LaTi₂Nb₃O₁₈ and Ba₄La₂Ti₃Nb₂O₁₈ were synthesized through solid state reaction from the high-purity

^{*}Corresponding author. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China. Fax: +86-27-8787-9468.

E-mail address: fangliang001@263.net (L. Fang).

^{0022-4596/\$ -} see front matter \odot 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2004.08.003

powders of BaCO₃ (>99.95%), La₂O₃ (>99.99%), TiO₂ (>99.99%), and Nb₂O₅ (>99.99%). The stoichiometric mixtures of starting powders were weighed and ball milled in distilled water medium for 12 h in a plastic bottle using zirconia balls. The wet mixtures were dried at 120 °C then calcined at 1350 °C in air for 24 h. These heated powders were pressed into discs of different thickness in the range 5–6 and 11 mm in diameter under a pressure of 180 MPa after grinding and then were sintered at 1420 °C for Ba₅LaTi₂Nb₃O₁₈ and 1450 °C for Ba₄La₂Ti₃Nb₂O₁₈ in air for 8 h to yield dense polycrystalline ceramics. The basic reaction for the synthesis could be represented by Eqs. (1) and (2).

$$10 \text{ BaCO}_3 + \text{La}_2\text{O}_3 + 4\text{TiO}_2 + 3\text{Nb}_2\text{O}_5 \rightarrow 2\text{Ba}_5\text{LaTi}_2\text{Nb}_3\text{O}_{18} + 10\text{CO}_2 \text{ (g)}, \qquad (1)$$

$$4BaCO_{3} + La_{2}O_{3} + 3TiO_{2} + Nb_{2}O_{5} \rightarrow Ba_{4}La_{2}Ti_{3}Nb_{2}O_{18} + 4CO_{2} (g).$$
(2)

Finally, the sintered polycrystalline samples were ground to prepare the powder for X-ray diffraction analysis.

Table 1

Crystallographic parameters for $Ba_5LaTi_2Nb_3O_{18}$ and $Ba_4La_2Ti_3Nb_2O_{18}$

Compounds	$Ba_5LaTi_2Nb_3O_{18}\\$	Ba ₄ La ₂ Ti ₃ Nb ₂ O ₁₈
Space group	R3m	R3m
$A = b(\mathbf{A})$	5.7106(1)	5.6602(1)
c (Å)	42.0666(5)	41.8296(5)
Z	3	3
Cell volume (Å ³)	1188.04(2)	1160.57(2)
Formula weight (g/mol)	1488.14	1444.7
2θ -range, step	$5-100^{\circ}, 0.005^{\circ}$	$5-100^{\circ}, 0.005^{\circ}$
X-ray radiation	$CuK\alpha_1$	$CuK\alpha_1$
	$(\lambda = 1.540598 \text{ Å})$	$(\lambda = 1.540598 \text{ Å})$
$R_{\rm p}, R_{\rm wp}, \chi^2 (\%)$	3.81, 5.16, 6.05	3.53, 4.83, 5.60

Table 2 Positional and thermal parameters for $Ba_5LaTi_2Nb_3O_{18}$

Atom	Position	x = -y	Ζ	Occu.	$B_{\rm iso}/{\rm \AA}^2$
01	18h	0.5058(8)	0.3032(2)	1	1.76(7)
O2	18h	0.4862(9)	0.4240(2)	1	1.76(7)
O3	18h	0.5112(11)	0.1390(2)	1	1.76(7)
Ba1	6c	0	0.3122(1)	1	0.45(1)
Ba2/La2	6c	0	0.4141(1)	0.75,0.25	0.45(1)
Ba3/La3	6c	0	0.1384(1)	0.75,0.25	0.45(1)
Nbl	6c	0	0.0523(1)	1	1.05(3)
Nb2/Ti2	6c	0	0.2225(1)	1/3,2/3	1.05(3)
Nb3/Ti3	3b	0	0.5	1/3,2/3	1.05(3)

X-ray diffraction measurements were conducted with a HUBER G670 Image Foil Guinier Camera using CuK α_1 radiation ($\lambda = 0.1540598$ nm). To collect data suitable for Rietveld refinement, a slow step-scan was employed with a total collection time of 12 h over the 2θ range 5–100°. An initial set of lattice parameters was obtained by the least-squares refinement using WinX-POW program. Rietveld refinements were then carried out in an isotropic approximation of the thermal parameters, using the program Fullprof-Suite [14]. The

Table 3 Selected interatomic distances for $Ba_5LaTi_2Nb_3O_{18}$ (Å)

Ba1–O1:	$2.881(5) \times 6$
Bal-O1:	$2.752(7) \times 3$
Bal-O2:	$3.292(7) \times 3$
Ba2/La2–O1:	$2.728(7) \times 3$
Ba2/La2–O2:	$2.888(6) \times 6$
Ba2/La2–O3:	$3.015(9) \times 3$
Ba3/La3-O2:	$2.687(7) \times 3$
Ba3/La3–O3:	$2.858(7) \times 6$
Ba3/La3-O3:	$2.812(9) \times 3$
Nb1–O1:	$1.843(6) \times 3$
Nb1–O2:	$2.406(7) \times 3$
Nb2/Ti2–O2:	$1.733(7) \times 3$
Nb2/Ti2-O3:	$1.943(9) \times 3$
Nb3/Ti3–O3:	$2.109(8) \times 6$

Table 4 Positional and thermal parameters for Ba₄La₂Ti₃Nb₂O₁₈

Atom	Position	x = -y	Ζ	Occu.	$B_{\rm iso}/{\rm \AA}^2$
01	18h	0.5017(7)	0.3003(2)	1	1.80(6)
O2	18h	0.4870(9)	0.4220(2)	1	1.80(6)
O3	18h	0.4958(12)	0.1400(2)	1	1.80(6)
Ba1	6c	0.0	0.3122(1)	1	1.04(1)
Ba2/La2	6c	0.0	0.4140(1)	0.5, 0.5	1.04(1)
Ba3/La3	6c	0.0	0.1389(1)	0.5, 0.5	1.04(1)
Nb1	6c	0.0	0.0524(1)	1	0.02(3)
Ti2	6c	0.0	0.2224(1)	1	0.02(3)
Ti3	3b	0.0	0.5000	1	0.02(3)

Table 5

Selected interatomic distances for Ba₄La₂Ti₃Nb₂O₁₈ (Å)

Bal–O1:	$2.874(5) \times 6$
Ba1–O1:	$2.803(6) \times 3$
Ba1–O2:	$3.202(7) \times 3$
Ba2/La2–O1:	$2.586(6) \times 3$
Ba2/La2–O2:	$2.853(6) \times 6$
Ba2/La2–O3:	$2.949(9) \times 3$
Ba3/La3–O2:	$2.742(7) \times 3$
Ba3/La3–O3:	2.831(8) × 9
Nb1–O1:	$1.808(5) \times 3$
Nb1–O2:	$2.326(7) \times 3$
Ti2–O2:	$1.770(7) \times 3$
Ti2–O3:	$2.071(9) \times 3$
Ti3–O3:	$1.944(8) \times 6$

microwave dielectric properties such as dielectric constant and unloaded Q factor were measured using an Agilent 8722ET network analyzer; the dielectric constants was calculated using TE₀₁₁ mode under the end-shorted condition using the method suggested by Hakki and Coleman and modified by Courtney [15,16]. The $\tau_{\rm f}$ was measured by noting the temperature variation of the TE₀₁₁ resonance in the temperature range 15–85 °C.

3. Results and discussion

Through the initial least-squares refinement, the XRD patterns of Ba₅LaTi₂Nb₃O₁₈ and Ba₄La₂Ti₃Nb₂O₁₈ were fully indexed on a trigonal lattice with unit cell parameters: a = b = 5.7106(1)Å, and c = 42.0666(5)Å for Ba₅LaTi₂Nb₃O₁₈; a = b = 5.6602(1)Å, c = 41.8296(5)Å for Ba₄La₂Ti₃Nb₂O₁₈, similar to those of Ba₆TiNb₄O₁₈ [17,18] and Ba₂La₄Ti₅O₁₈ [19,20]. All

Fig. 1. Observed, calculated and difference X-ray pattern for Ba5LaTi2Nb3O18.

Fig. 2. Observed, calculated and difference X-ray pattern for Ba₄La₂Ti₃Nb₂O₁₈.

peaks were indexed and there was no evidence of any second phase(s) present such that the samples were single-phase pure.

Based on the initial crystal structure model for Ba₆TiNb₄O₁₈ [17] and previous studies using neutron diffraction on Ba₂La₄Ti₅O₁₈ [19], the Rietveld refinement was carried out in the space group $R\overline{3}m$ on the assumption that A1 sites, between two adjacent perovskite-like slabs, are exclusively occupied by larger Ba atoms, A2 and A3 sites are occupied by Ba and La. B1 sites, near the vacancy, are preferentially occupied by larger Nb atoms; B2 sites and B3 sites are randomly occupied by Nb and Ti. The thermal parameters for all atoms are refined in isotropic approximation. The refinement converged with Rp = 3.81%, Rwp = 5.16%for $Ba_5LaTi_2Nb_3O_{18}$; and Rp = 3.53%, Rwp = 4.83%for Ba₄La₂Ti₃Nb₂O₁₈. The *R*-factors are not corrected for background. The background are linear interpolated with 78 and 24 background points for Ba₅LaTi₂Nb₃O₁₈ and Ba₄La₂Ti₃Nb₂O₁₈, respectively. The parameters of the Rietveld refinement and residual factors for both are given in Table 1. Positional and thermal parameters and selected interatomic distances are listed in Tables 2 and 3 for Ba₅LaTi₂Nb₃O₁₈ and in Tables 4 and 5 for Ba₄La₂Ti₃Nb₂O₁₈, respectively. Calculated and different X-ray patterns are shown in Figs. 1 and 2 for Ba₅LaTi₂Nb₃O₁₈ and Ba₄La₂Ti₃Nb₂O₁₈, respectively. The structure of Ba₅LaTi₂Nb₃O₁₈ is shown in Fig. 3. Both oxides are isostructural with $Ba_6TiNb_4O_{18}$ [17] and belong to A6B5O18 perovskite-related structure which can be described as consisting of identical perovskitelike blocks, five corner-sharing BO₆ octahedra thick, separated by layers of vacant octahedral [17].

The unit cell parameters and unit-cell volume of $Ba_5LaTi_2Nb_3O_{18}$, $Ba_4La_2Ti_3Nb_2O_{18}$ and $Ba_2La_4Ti_5O_{18}$ slightly decrease as the content of La^{3+} and Ti^{4+} ions increase since the Shannon's effective ionic radius [21] of La^{3+} (1.36 Å) is smaller than that of Ba^{2+} (1.61 Å) at A site and the radius of Ti^{4+} (0.605 Å) is smaller than that of Nb⁵⁺ (0.64 Å) at B site. In $Ba_5LaTi_2Nb_3O_{18}$, the Ba/La–O bonds range from 2.687(7) to 3.292(7) Å and the (Ti, Nb)–O bonds range from 1.733(7) to 2.406(7) Å. Similarly, in $Ba_4La_2Ti_3Nb_2O_{18}$, the Ba/La–O bonds range from 2.586(6) to 3.202(7) Å, and the Ti/Nb–O bonds range from 1.770(7) to 2.326(7) Å.

The microwave dielectric properties of Ba_5LaTi_2 Nb₃O₁₈ and $Ba_4La_2Ti_3Nb_2O_{18}$ ceramics are shown in Table 6. Both ceramics exhibit high dielectric constant in the range 55.1–57.3, high quality factors with *Qf* in the range 18,456–21,273 GHz. Compared with our previous work [10–11], the dielectric constant and quality factors *Qf* for both ceramics have been slightly increased by increasing the times of calcination and sintering, respectively, and this might be concerned with the increased crystallinity and relative densities.

Fig. 3. Crystal structure of Ba₅LaTi₂Nb₃O₁₈.

The temperature coefficients of resonant frequency $\tau_{\rm f}$ of Ba₄La₂Ti₃Nb₂O₁₈, Ba₅LaTi₂Nb₃O₁₈ compared with Ba₂La₄Ti₅O₁₈ ceramic [7] and their B-site bond valence $(V_{\rm Nb}, V_{\rm Ti})$ values are listed in Table 7. The details on the valences (V_i) of B-site ions in these crystal structures were determined by the bond valence sum, calculated using Brown's method [22] (see Eqs. (3) and (4)).

$$s_{ij} = \exp(R_0 - R_{ij})/B, \tag{3}$$

$$V_i = \sum_j s_{ij},\tag{4}$$

where R_0 and B are known as the bond valence parameters of various cations, and a constant value

Table 6 Microwave dielectric properties of $Ba_5LaTi_2Nb_3O_{18}$ and $Ba_4La_2Ti_3Nb_2O_{18}$

Composition	Sintering c	onditions	Density (%	theor.)	ê _r	Q	f (GHz)	Qf (GHz)
$\begin{array}{l} Ba_5LaTi_2Nb_3O_{18}\\ Ba_4La_2Ti_3Nb_2O_{18}\end{array}$	1420 °C, 6h 1450 °C, 6h	1	96.7 95.3		57.3 55.1	3950 4180	4.6725 5.0894	18456 21273
Table 7 B-site bond valance of	three perovskite	s						
Composition	$R_{\rm Nb}({ m \AA})$	$R_{\mathrm{Ti}}(\mathrm{\AA})$	$R_{ m B-O}({ m A})$	B(Å)	V _{Nb}	V_{Ti}	$V_{\text{unit-cell}} (\text{\AA}^3)$	$\tau_f(\text{ppm}^{\circ}\text{C}^{-1})$
$\begin{array}{l} Ba_{5}LaTi_{2}Nb_{3}O_{18}\\ Ba_{4}La_{2}Ti_{3}Nb_{2}O_{18}\\ Ba_{2}La_{4}Ti_{5}O_{18} \ [7,19] \end{array}$	1.911 1.911	1.815 1.815 1.815	2.024 1.977 1.955	0.37 0.37 0.37	4.42 5.02	3.41 3.87 4.11	1188.04(2) 1160.57(2) 1107.42	+138 + 61 - 36.4

(0.37 Å), respectively, and then R_{ij} means the interatomic distance between cation *i* and *j*. In this paper R_{ij} is the mean bond length of B–O.

It has been reported that the $\tau_{\rm f}$ could be effectively evaluated by the *B*-site bond valence in the perovskite structure [23]. It is clear that the $\tau_{\rm f}$ of these ceramics gradually decrease with an increase in *B*-site bond valances due to a decrease in unit-cell volumes with increasing content of La and Ti ions. Therefore, the $\tau_{\rm f}$ might be controlled with the increase of *B*-site bond valence in A₆B₅O₁₈ cation-deficient perovskite compounds in the BaO–La₂O₃–TiO₂–Nb₂O₅ system, which is similar to the results in some ABO₃ perovskite compounds [23,24]. Further, a near-zero $\tau_{\rm f}$ might be achieved in the ceramics of intermediate compositions between Ba₄La₂Ti₃Nb₂O₁₈ and Ba₂La₄Ti₅O₁₈, and this work is in progress.

4. Conclusions

Ba₅LaTi₂Nb₃O₁₈ and Ba₄La₂Ti₃Nb₂O₁₈ have been synthesized and identified as A₆B₅O₁₈ type cationdeficient perovskites with space group $R\overline{3}m$ and their lattice constants are a = b = 5.7106(1)Å, c =42.0666(5)Å; and a = b = 5.6602(1)Å, c =41.8296(5)Å, respectively. The polycrystalline samples of these compounds exhibit high dielectric constant and low dielectric loss. The $\tau_{\rm f}$ of these ceramics gradually decrease with an increase in *B*-site bond valance due to the decrease in unit-cell volumes with increasing content of La and Ti ions, and this suggests the potential for microwave application of the present materials.

Acknowledgments

This work was financially supported by Natural Science Foundation of China (NSFC No.50002007),

the Major Program of Chinese MOE (No.0201), and ICDD Grant-in-Aid project under Grant No. 02–05. Mrs. Hui Zhang is thankful to DAAD for the scholar-ship.

References

- [1] W. Wersing, Curr. Opin. Solid State Mater. Sci. 1 (1996) 715-731.
- [2] R. Ubic, I.M. Reaney, W.E. Lee. Int. Mater. Rev. 43 (1998) 205–219.
- [3] R. Ratheesh, M.T. Sebastian, P. Mohanan, J. Harnett, R.E. Woode, D.G. Blair, Mater. Lett. 45 (2000) 279–285.
- [4] H. Sreemoolanadhan, M.T. Sebastian, P. Mohanan, Mater. Res. Bull. 30 (1995) 653–658.
- [5] S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vanek, P. Kuzel, I.N. Jawahar, M.T. Sebastian, P. Mohanan, J. Appl. Phys. 89 (2001) 3900–3906.
- [6] L. Fang, H. Zhang, T.H. Huang, R.Z. Yuan, R. Dronskowski, Mater. Res. Bull., MRB2798, in press.
- [7] C. Veneis, P.K. Davies, T. Negas, S. Bell, Mater. Res. Bull. 31 (1996) 431–437.
- [8] I.N. Jawahar, N.I. Santha, M.T. Sebastian, J. Mater. Res. 17 (2002) 3084–3089.
- [9] T. Okawa, K. Kiuchi, H. Okabe, H. Ohsato, Jpn. J. Appl. Phys. Part 1 40 (2001) 5779–5782.
- [10] L. Fang, H. Zhang, R.Z. Yuan, R. Dronskowski, J. Mat. Sci., No.JMSL10435-04, to be published.
- [11] L. Fang, H. Zhang, L. Chen, R.Z. Yuan, R. Dronskowski, J. Mat. Sci: Mater. Electron., JMSE/04/0542, to be published.
- [12] C.A. Kirk, M.C. Stennett, I.M. Reaney, A.R. West, J. Mater. Chem. 12 (2002) 2609–2611.
- [13] M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectric and related Materials, Oxford University Press, London, 2001.
- [14] T. Roisnel, J. Rodriguez-Carvajal, FullProf Suite (Version 2.50, Oct 2003 LLB JRC).
- [15] B.W. Hakki, P.D. Coleman, IRE Trans. Microwave Theory Tech. MIT-8 (1960) 402.
- [16] W.E. Courtney, IEEE Trans. Microwave Theory Tech. MIT-18 (1970) 476.
- [17] H.C. van Duivenboden, H.W. Zandbergen, D.J.W. Ijdo, Acta Cryst. C 42 (1986) 266–268.
- [18] V.A. Saltykova, O.V. Melnikova, N.V. Leonova, N.F. Fedorov, Russ. J. Inorg. Chem. 30 (1985) 105–108.

- [19] N. Teneze, D. Mercurio, G. Trolliard, B. Frit, Mater. Res. Bull. 35 (2000) 1603–1614.
- [20] N. Harre, D. Mercurio, G. Trolliard, B. Frit, Eur. J. Solid State Chem. 35 (1998) 77–90.
- [21] R.D. Shannon, Acta Cryst. A 32 (1976) 751-767.
- [22] N. E Brese, M. O'Keeffe, Acta Cryst. B 47 (1991) 192-197.
- [23] E.S. Kim, K.H. Yoon, J. Euro. Ceram. Soc. 23 (2003) 2397–2401.
- [24] K.H. Yoon, W.S. Kim, E.S. Kim, Mater. Sci. Eng. B 99 (2003) 112–115.